A greedy algorithm for convex geometries
نویسندگان
چکیده
Convex geometries are closure spaces which satisfy anti-exchange property, and they are known as dual of antimatroids. We consider functions defined on the sets of the extreme points of a convex geometry. Faigle– Kern (1996) presented a greedy algorithm to linear programming problems for shellings of posets, and Krüger (2000) introduced b-submodular functions and proved that Faigle–Kern’s algorithm works for shellings of posets if and only if the given set function is b-submodular. We extend their results to all classes of convex geometries, that is, we prove that the same algorithm works for all convex geometries if and only if the given set function on the extreme sets is submodular in our sense.
منابع مشابه
Clustering on antimatroids and convex geometries
The clustering problem as a problem of set function optimization with constraints is considered. The behavior of quasi-concave functions on antimatroids and on convex geometries is investigated. The duality of these two set function optimizations is proved. The greedy type Chain algorithm, which allows to find an optimal cluster, both as the most distant group on antimatroids and as a dense c...
متن کاملDual greedy polyhedra, choice functions, and abstract convex geometries
We consider a system of linear inequalities and its associated polyhedron for which we can maximize any linear objective function by /nding tight inequalities at an optimal solution in a greedy way. We call such a system of inequalities a dual greedy system and its associated polyhedron a dual greedy polyhedron. Such dual greedy systems have been considered by Faigle and Kern, and Kr1 uger for ...
متن کاملSeveral Aspects of Antimatroids and Convex Geometries Master's Thesis
Convexity is important in several elds, and we have some theories on it. In this thesis, we discuss a kind of combinatorial convexity, in particular, antimatroids and convex geometries. An antimatroid is a combinatorial abstraction of convexity. It has some di erent origins; by Dilworth in lattice theory, by Edelman and Jamison in the notions of convexity, by Korte{Lov asz who were motivated by...
متن کاملGreedy Fans: A geometric approach to dual greedy algorithms
The purpose of this paper is to understand greedily solvable linear programs in a geometric way. Such linear programs have recently been considered by Queyranne, Spieksma and Tardella, Faigle and Kern, and Krüger for antichains of posets, and by Frank for a class of lattice polyhedra, and by Kashiwabara and Okamoto for extreme points of abstract convex geometries. Our guiding principle is that ...
متن کاملAn Iterated Greedy Algorithm for Solving the Blocking Flow Shop Scheduling Problem with Total Flow Time Criteria
In this paper, we propose an iterated greedy algorithm for solving the blocking flow shop scheduling problem with total flow time minimization objective. The steps of this algorithm are designed very efficient. For generating an initial solution, we develop an efficient constructive heuristic by modifying the best known NEH algorithm. Effectiveness of the proposed iterated greedy algorithm is t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 131 شماره
صفحات -
تاریخ انتشار 2003